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Brownian-particle trapping by clusters of traps
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Brownian-particle trapping is considered in the case when traps are gathered in “clouds” distributed
in space in a noncorrelated manner. A general formula for the survival probability is derived. Its
analysis shows that the trap-cluster formation leads to a process slowdown (meaning a slowdown in the
trapping rate) in comparison with the case of noncorrelated traps. The slowdown is significant from the
very beginning of the process or only at its final stage, depending on the cloud structure.

PACS number(s): 05.40.+j, 82.20.Db

The problem of Brownian-particle survival among ran-
domly distributed static traps is of unremitting interest
due to its close relation to a variety of physical and chem-
ical phenomena [1,2]. The convention theory suggested
by Smoluchowski is based on the assumption that traps
are distributed in space in a noncorrelated manner [1].
Several attempts to take trap correlations into account
were made in the past decade [3—5]. In this paper the
problem is considered in the case when traps are correlat-
ed in a special manner, viz., they are collected in
“clouds” randomly distributed in space. Such a special
type of correlation may arise, for example, due to trap
binding with a certain supporting object (e.g., to a poly-
mer chain) or as a result of the trap generation (e.g.,
when traps are created by radiation damage). We show
that trap-cluster formation leads to trapping slowdown;
however, depending on the cloud structure, this effect
may manifest itself at the early stage of the process or
only at large times.

As usual, suppose that traps are absorbing spheres and
their volume fraction is small. Trap clouds are assumed
spatially noncorrelated and statistically similar, i.e., the
number of traps and their distribution inside each cloud
are the same. In particular, the total trap concentration ¢
is related to the cloud concentration c by the equation
¢ =nc, where n is the number of traps in each cloud. To
calculate the survival probability P(?), it is necessary to
carry out two procedures of averaging: one over trap
configurations and the other over trajectories of a
Brownian particle. Following the approach suggested in
[6], we start with the first averaging, i.e., find the (condi-
tional) survival probability P(¢|W,) for a particle moving
along a fixed Wiener trajectory W,. Denote by Q(X|W,)
the probability of the annihilation of such a particle on a
single cloud centered at a point X. Introducing an auxili-
ary volume € containing N =c, {) clouds centered at
X,, ..., Xy and passing to the limit Q — o, we obtain
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1 N
P(th,)=(lliianWfﬂ"'fQLIl[l_Q(Xi]W,)]dXi
N
= lim [1-2 [ 0(X|W,)dxX
=exp[——cc,fQ(X|W,)dX] . (1)

So, the problem is reduced to that with the presence of
only one trap cloud.

In turn, the annihilation probability Q(X|W,) equals
the fraction of such intracloud trap configurations that at
least one trap center occurs at a distance less than the
trap radius b from the trajectory W,, i.e., within the b vi-
cinity of W,. Such a b-vicinity w,(W,), known as a
“Wiener sausage” [7,8], is the region of space visited by a
sphere of the radius b whose center moves along the
Wiener trajectory W,. Using the indicator function
X(Z;0,(W,)), which is equal to 1 when point Z belongs
to w,(W,) and O otherwise, and denoting an average over
intracloud trap configurations by a bar, we can write

n
QX|W)=1—]1 {(1-x(W+Y;;0,(W,))} , ()

j=1
where Y;, j=1,...,n indicates the position of the jth
trap center with respect to the cloud center X. Finally,
to obtain the desired survival probability P(t), it remains
to average the conditional probability (1) over Wiener

trajectories, which is denoted by angle brackets:

P(1)=(P(t|W,))

—cde(xlw,)dxxD . 3)

= <exp

In the particular case n =1,

JoX|W,)dxX= [ x(X+Y;0,(W,))dX=3(a,(W,)),
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where Hw,(W,)) is the volume of the Wiener sausage
o, (W,) and, as should be expected, the survival probabil-
ity (3) is reduced to that for noncorrelated traps [6]:

P,..(t)=(exp[ —cHaw,(W,))]) . )

To interpret Eq. (3) for n > 1, let us consider a region
o (W,; {Y;}) being a unification of n copies of the ini-
tial Wiener sausage w,(W,) shifted at the vectors Y,
j=1,...,n. One can realize such a region as a group of
n Wiener sausages generated by the traps of a single
cloud as the cloud center moves along the Wiener trajec-
tory. Notice that the concept of the group arises rather
naturally if one looks on the process from the “particle’s
view” when Brownian motion is performed by the cloud
center. One can check that the integral in Eq. (3) is equal
to the volume of the group w{(W,;{Y}) averaged over
intracloud trap configurations {Y;}. Thus, denoting the
latter quantity by $(w{"(W,)), one can present Eq. (3) in
a form analogous to Eq. (4):

P(t)=(exp[ —cqgH(W,)N]) . (5)

The general formula (5) enables one to compare the ki-
netics of trapping on clusters of traps with that in the
case of noncorrelated traps, Eq. (4). From the obvious in-
equality

Ho(W,)) <ndHwy(W,)) , (6)
it follows immediately that
P(t)SP, (1) . (7

Moreover, because of possible mutual penetration of indi-
vidual Wiener sausages of the group, the inequalities (6)
and (7) are actually strict. Thus, we arrive at the con-
clusion that the correlations under study result in the
process slowdown. Note that the effect is most pro-
nounced in the limiting case when all traps of a cloud are
superimposed on one another:

P(t)<P_ (t)=(exp[ —cqHw,(W,)]) .

Below we show that the trapping slowdown may become
considerable either from the very beginning of the pro-
cess or only at its final stage, depending on the cloud
structure.

The principal difficulty in analyzing Eq. (5) is related to
averaging over Wiener trajectories. It is clear that at the
initial stage the main contribution is given by the typical
trajectories determining the average volume of the group
of Wiener sausages. This suggests employing the mean-
field approximation, neglecting the volume fluctuations at
such times. Note that at the final stage, such an ap-
proach is inapplicable because of the crucial role of the
volume fluctuations at asymptotically large times. (The
boundary between the initial and final stages of the pro-
cess is discussed below.) For noncorrelated traps the
mean-field approximation is justified at normal (not
asymptotically large) times [6]. In particular, in three di-
mensions due to the time dependence of the average
Wiener-sausage volume [9], (Hw,(W,)))~4xbDt,
where D is the diffusion coefficient, the survival probabili-
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ty (4) is reduced to the well-known Smoluchowski result
—InP, (t)>~4mbcDt . (8)

Similarly, applying the mean-field approximation to Egs.
(3) and (5), we arrive at the following equation for the
probability of particle survival among clusters of traps at
normal times:

P(t)=exp[ —cy [ Q(X;1)dX]
=exp[ —cqIH(1)] . ©)

Here, Q(X;t)=(Q(X|W,)) is the annihilation probabili-
ty in the presence of a single cloud centered at X and
32(t) is the volume of the group of Wiener sausages
averaged over Wiener trajectories,

IR =(H™(W,))) .

It should be pointed out that the correlations under
consideration may be treated as a combination of correla-
tions of two different types, viz., cluster formation, being
responsible for the formation of clouds, and intracloud
correlations determining cloud structure. In the case
when the latter are absent and traps in a cloud, being in-
dependent of each other, are uniformly distributed within
the cloud, the correlations may be interpreted as a
display of trap attraction. In that sense, the process
slowdown predicted by the inequality (7) is in agreement
with the general conclusion about the influence of trap
correlations on the trapping kinetics [5]. In this case the
annihilation probability (2) can be presented in the form

o(X,)=(Q(X|W,))=1—([1—q(X|W,)]") , (10)
where

@ (X|W)=x(X+Y,0, W,))

is the probability that the trajectory W, hits a given trap
randomly located within the cloud centered at X. Below,
we consider the problem in three dimensions assuming
that clouds are spheres of radius R >>b. We also restrict
ourselves to the case when the number of traps in a cloud
is large, n >>1, and clouds are nonoverlapping, i.e., their
volume fraction is small,

cqR3<<1. (11)

Before proceeding to an analysis of Eq. (9), let us out-
line a qualitative picture of the kinetics by heuristic argu-
ments. Begin with a comparison of two characteristic
times related to Brownian-particle passage through a
cloud: the diffusion time 7,~R?2/D and the lifetime
T;~(cinbD) !, where ¢,,=n/Vy is the intracloud trap
concentration and ¥V is the cloud volume [7; is estimat-
ed from the Smoluchowski dependence (8) where c is re-
placed by c;,]. It is readily seen that if the cloud parame-
ters satisfy the inequality nb /R >>1, then 7, >>7;, and a
particle entering such a cloud most likely is annihilated
before leaving. In other words, a cloud actually plays the
role of a single trap of radius R and hence may be called
“absorbing.” In this case the kinetics have the usual
Smoluchowski form and are controlled by the cloud con-



4566

centration, but not the total trap concentration [cf. Eq.
(8)]:

—InP(t)~47RDct . (12)

In contrast, if nb/R <<1, then 7;<<7;, which means
that a particle passes through a cloud nearly “safely.” It
is natural to call such clouds “transparent.” Notice that
nonoverlapping clouds [see Eq. (11)] can be transparent
only if the number of traps inside a cloud is not too large:
n <<(cb*)~!/2. Due to the cloud transparency, a particle
visits a large number of clouds before being annihilated.
Since the clouds are nonoverlapping, the time 7 that a
particle spends in the intracloud domains is 7=~c Vyt.
So, one can effectively realize the process as if it occurs
with noncorrelated traps of the concentration c,, during
the time 7Z. Then, in the framework of the Smoluchowski
theory, one obtains

—InP(t)=~4mbc,, Dt ~47nc bDt ,

and the conventional dependence (8) is recovered. Thus,
cloud transparency is responsible for the particle being
affected by just the total trap concentration c, i.e., the
effective averaging of the initially inhomogeneous medi-
um takes place.

So, we arrive at the following simple picture: The
cluster-formation influence on the kinetics is character-
ized by the dimensionless parameter nb /R only. If the
parameter is large, nb/R >>1 (absorbing clouds), then
the process is substantially slower than that with non-
correlated traps from the very beginning [cf. Egs. (8) and
(12)]. Note that such an effect was observed in a particu-
lar model of trapping by segments of polymer chain [4].
The case of transparent clouds, nb /R <<1, corresponds
to a rather unexpected situation when the slowdown pre-
dicted by Eq. (7) is very slight and the trap-cluster forma-
tion does not actually manifest itself in the kinetics. This
is related to the fact that the slowdown, since it is a very
faint effect for transparent clouds, does not appear in the
above rough estimations.

Now let us support this picture by an analysis of Eq.
(9). First, consider the case of absorbing clouds when
nb/R >>1. It is convenient to present the annihilation
probability Q(X,t) (10) in the form reflecting the fact
that the particle annihilation implies visiting the cloud:

Q(X,t)=Qr(X,t)— (x(X,0g (W,))[1—q,(X|W)]") ,
(13)
where
Or (X, 1)=Ax(X,0g (W,)))

is the probability of annihilation on a trap of radius R
and wg (W,) is a Wiener sausage generated by a spherical
Brownian particle of radius R. To estimate the second
term in Eq. (13), let us apply a mean-field approximation
once more. Then this term is reduced to

Or (X, ) {1— (X, 0r(W,))g,(X|W,))}" .

It can be shown that the expression in the angle brackets
is ~b/R. So, the estimated term is small as compared to
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Or(X,t)=Qp(X,t). Integration of this relation over X
shows that the average group volume %(t) is close to
(Hwg(W,))) and, as a result, Eq. (9) is reduced to Eq.
(12). Note that in this case the group is formed by
strongly overlapped Wiener sausages, despite the fact
that intracloud volume fraction of traps,

Pin~Cinb*~n(b/R),

may be small.

In the opposite case of transparent clouds when
nb /R <<1, we proceed from the following expansion of
the annihilation probability (10):

n .
0(X,t)=3 (—1)"10,(X,1), (14)

i=1
where
Q,(X,t)=[n!/in—iN){qg (X|W,))

is the probability that the Wiener trajectory hits i
different traps belonging to the cloud centered at X. Ob-
serve that retention of only the first term Q, leads to the
Smoluchowski dependence (8). The second term Q, of
the alternating expansion (14) bounds the deviation of Q
from Q,. The probability Q, can be evaluated via the ac-
count of two factors: hitting one of n traps and subse-
quently hitting some other trap. The probability of the
first event is bounded just by Q;, whereas that of the
second one is ~nb/R. So, for transparent clouds,
Q, <<Q;, and hence the estimation Q ~Q, is correct. As
a result, the average group volume 9#\X(z) is close to
n{3w,(W,))), ie., the overlapping of Wiener sausages
in the group is small, and the trap-cluster formation does
not affect the process kinetics. Note that the above ap-
proximation of the annihilation probability Q gives an
upper bound and, in fact, the kinetics is slower than that
for noncorrelated traps, Eq. (8), in accordance with the
inequality (7).

At asymptotically large times, the mean-field approach
fails. Fortunately, here the problem can be treated in a
different manner. The point is that the majority of parti-
cles surviving at such times spend all the time in large
spherical cavities free from traps. Such particles move
along trajectories that generate Wiener sausages of spher-
ical shape. At every time instant there are cavities of op-
timal radius growing with time, which give the main con-
tribution to the survival probability [7,10]. When the op-
timal cavity size becomes greater than the cloud radius,
one can treat clouds as absorbing regardless of their
structure. This is why the survival probability P(z) (5)
has a universal asymptotic behavior controlled by the
cloud concentration

—InP(t)~(c}*Dt)"* . (15)

Thus, at large times the trapping is considerably slower
than that in the absence of correlations. In particular,
for transparent clouds the slowdown predicted by Eq. (7),
being negligible at normal times, is displayed in the long
run.

Estimate a fraction a of particles whose annihilation
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obeys the nonexponential asymptotic law (15). Let ¢* be
the crossover time separating normal and asymptotically
large times. The time instant ¢* is found via equating the
dependencies describing the kinetics at the initial and
final stages. Using Eqgs. (8), (12), and (15), one obtains

pi/?Ina, . for absorbing clouds
Ing ~ n_ilna, for transparent clouds ,
where a,. is the value of a for noncorrelated traps,
—Ina,.~p~ /% and p~cbh? is the total volume fraction
of traps. One can check that for absorbing clouds the
quantity a increases with cloud size and is considerably
greater than a,. provided p;, <1. The maximal value of a
is attained for transparent clouds since, due to the condi-
tion (8), pl/2<n~!. Thus, cluster formation of traps can
lead to a substantial increase in the fraction of particles
which annihilate according to the asymptotic law (15). A
similar effect for a particular model (in fact, correspond-
ing to the case of absorbing clouds) was noted in Ref. [4].
In conclusion, we have studied the trapping problem in
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the case when traps are gathered in randomly distributed
clouds. We have shown that the trap-cluster formation
leads to a slowdown of the process [Eq. (7)] regardless of
the intracloud structure. The case of the “pure” clusteri-
zation has been analyzed in detail for nonoverlapping
clouds. We have found that if clouds are absorbing, then
the deviations of the trapping kinetics from that with
noncorrelated traps are considerable from the very begin-
ning of the process. In contrast, if clouds are transpar-
ent, cluster formation does not manifest itself at normal
times. So, the cloud transparency ‘“cancels” the correla-
tions. At asymptotically large times, the slowdown effect
is strongly pronounced independently of the cloud struc-
ture and the kinetics has a universal form [Eq. (15)].
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